Scaling model training

From flexible training APIs to resource management
with Kubernetes

Kelley Rivoire, Stripe

stripe

Real World Machine Learning (@ Stripe)

e Stripe provides a toolkit to start and run an internet business

e We need to make decisions quickly and at scale
e Our actions affect real businesses

Trained with hundreds of
billions of data points

Stripe processes payments from 195 countries
for every industry, company size, and business
model. Even if a card is new to your business,
there’s an 89% chance it's been seen before
on the Stripe network.

Strength in numbers

By learning from millions of global businesses
processing billions in payments each year, Radar can
assign risk scores to every payment and automatically

block many high-risk payments.

Better ML outcomes with Stripe-scale data

Radar scans every payment using thousands of
signals from across the Stripe network to help detect

and prevent fraud—even before it hits vour business.

stripe

REDUCE DECLINED PAYMENTS BY UP TO 45%

®) BILLING : :
Nearly a quarter of churn is caused by missed payments or

declined cards. In 2017, Stripe’s recovery tools reduced
payment declines for users by 45% on average and increased

revenue by 10% on average.

Automatic card updater
Stripe works directly with card networks to update payment

details with new card numbers or expiry dates.

Smart retry logic
Stripe uses machine learning algorithms that train on data
from across the Stripe network to optimize retry logic and

minimize failed payments.

Payment reminders and overdue notices
Maximize your chances of getting paid with pre-built email

reminders for missed or overdue payments.

stripe

Model training

stripe

Countries card used
Amount in USD Card country from (24h)

$10.00
$10.00
$10.00
$10.00
$30.00
$99.00
$15.00

$70.00

Toy model of ML

f(a, b, c, d, e)

@ —

g(abcde) h(a, b, c, d, e)

stripe

False negatives True positives False positives True negatives

BLOCKED CHARGES

False negatives True positives False positives True negatives

BLOCKED CH/ High score

threshold for

blocking

Precision

Recall

Low score
threshold for
blocking

Model training system wishlist

e Easyto get started

e Flexible - facilitate experimentation with libraries, model types,
SEICINISES

e Automatable

e Tracking and reporting

e Interfaces with ML ecosystem (e.g. features, inference)

e Reliable

® Secure

e Abstract away resource management

stripe

Model training system wishlist

e Easyto get started

e Flexible - facilitate experimentation with libraries, model types,
SEICINISES

e Automatable

e Tracking and reporting

e Interfaces with ML ecosystem (e.g. features, inference)

e Reliable

® Secure

e Abstract away resource management

Railyard on Kubernetes

stripe

Railyard API

stripe

stripe API

Q Find anything

Introduction
Authentication
Errors

Expanding Objects
Idempotent Requests
Metadata

Pagination

Request IDs

Versioning

Balance
Charges
Customers
Disputes
Events
Files

File Links

API Reference

The Stripe APl is organized around REST. Our API has predictable
resource-oriented URLs, accepts form-encoded request bodies,
returns JSON-encoded responses, and uses standard HTTP
response codes, authentication, and verbs.

You can use the Stripe APl in test mode, which does not affect your live data
or interact with the banking networks. The API key you use to authenticate
the request determines whether the request is live mode or test mode.

The Stripe API differs for every account as we release new versions and tailor
functionality. Log in to see docs customized to your version of the API, with

your test key and data.

Subscribe to Stripe's APl announce mailing list for updates.

Was this section helpful? Yes No

NOT A DEVELOPER?

Use apps from our partners to get started with Stripe and to do more with
your Stripe account—no code required.
BASE URL

https://api.stripe.com

CLIENT LIBRARIES

4 e < o s
Ruby Python PHP Java Node.js Go NET
By default, the Stripe APl Docs demonstrate using curl to interact with

the APl over HTTP. Select one of our official client libraries to see
examples in code.

How it works

Training data

v

Model training
workflow (python)

Model Railyard

evaluation (training API)

stripe

Example workflow

StripeFraudModel () :

def (self, training dataframe, holdout dataframe):
pipeline = Pipeline ([
('boosted', xgboost.XGBRegressor (**self.custom params))
1)
serializable pipeline = stripe ml.make serializable (pipeline)
fitted pipeline = pipeline.fit(training dataframe,
self.classifier label)
fitted pipeline

stripe

APl Request: Metadata

"model description" : "A model to predict fraud",
"model name" : "fraud prediction model",

"owner" : "machine-learning-infrastructure",
"project": "strata-data-talk",

"trainer": "kelley",

stripe

APl Request: Data

"data" : {

"features" : |

"names" : ["created at", "charge type", "charge amount",
"charge country", "has fraud dispute"],

"path": "s3://path/to/parquet/fraud data.parqg"

1,

"date column": "created at",

stripe

API Request: Filters

"filters" : [
{
"feature name" : "charge country",
"predicate" : "IsIn",
"feature value" : {
"string vals": ["US", "CA"]

stripe

APl Request: Holdout data

"holdout sampling" : {
"sampling function" : "DATE RANGE",
"date range sampling" : {
"date column" : "created at",
"start date": "2018-10-01",
"end date": "2019-01-01"

stripe

APl Request: Training!

"train" : {
"workflow name" : "StripeFraudModel",
"classifier features": ["charge type", "charge amount"],
"label" : "has fraud dispute"
"custom params": {
"objective": "reg:linear",
"max depth": 6,

"n estimators": 500,

} stripe

APl Request: Training!

"train" : {
"workflow name" : "StripeFraudModel",
"classifier features": ["charge type", "charge amount"],
"label" : "has fraud dispute"
"custom params": {
"objective": "reg:linear",
"max depth": 6,

"n estimators": 500,

} stripe

Example request and response

POST /train <request>

"908le6df-b2c0-455e-bcaa-clc211£fal24b"
GET /job/{job id}/status

GET /job/{job id}/result

stripe

GET /job/{job id}/result

"status": {
"job _id": {job_id},
"log file":"s3://{path}/{job id}/logs",
"transition": {
"created at":"2019-03-22 18:00:04 +0000",
"job state":"complete"
}y
"git commit":{git SHA}
by

"result":{

"evaluation holdout data path":"s3://{dir}/{model id}/scores.tsv",

"evaluation holdout label path":"s3://{dir}/{model id}/labels.tsv",

"diorama id":"sha256.FDK2WAU4ULUV7ERWP3BMSVGPBGWG2GPUTUZXHOZRVSNCA4LPGVRA"

by

"exceptionInfo":null

}

How it works

Training data

Railyard » Model training
(training API) workflow (python)

5
¥

Retraining

Model e

service

evaluation

stripe

Publish

events <> Archival
Application *W

diorama
(real-time
inference

Update tag - >
T T Model package

Model Railyard
evaluation (training API)

Predict by tag
Training data
generation

Model training

workflow (python)

stripe

What we learned

API:

e Be flexible with model parameters
e Notusing a DSL was the right choice for us.
e Tracking model provenance and ownership is really important

Workflow:

e Interfaces are important
e Usersshould not have to think about model serialization or persistence
e Measure each step

stripe

Model training system wishlist

v Easy to get started
v Flexible - facilitate experimentation with libraries, model types,
SEICINISES
v Automatable
v Tracking and reporting
v Interfaces with ML ecosystem (e.g. features, inference)
e Reliable
e Secure
e Abstract away resource management

Railyard on Kubernetes

stripe

Railyard on Kubernetes

stripe

In the beginning

i3.16xlarge i3.16xlarge p3.2xlarge

sally sally mindy
Jim joe
sally

stripe

In the beginning

o Ny Ny
i3.16xlarge i3.16xlarge p3.2xlarge

sally sally mindy
Jim joe
sally

stripe

Running on Kubernetes

command: ["sh'"]
args: ["-c", "python /railyard train.par"]

Docker
container

.par file EE—

Amazon ECR

par binary(

name = "railyard train",

srcs = ["@.../ml:railyard srcs"],
data = ["@.../ml:railyard data"],
main = "@.../ml:railyard/train.py",
deps = all requirements,

stripe

Running on Kubernetes

Kubernetes

Training Job: CPU Worker

Docker Image

parfile

Training Job: GPU Worker

Logs,
Serialized Models
parfile Evaluation Data

Clients Railyard API (Scala) Docker Image

l

Postgres

Training Job: High Memory Worker

Docker Image

parfile

Heterogeneous workflows

"compute resource": "GPU"

stripe

Model training system wishlist

v Easy to get started

v Flexible - facilitate experimentation with libraries, model types,
SEICINISES

v Automatable

v Tracking and reporting

v Interfaces with ML ecosystem (e.g. features, inference)

v Reliable

v Secure

v

Abstract away resource management

Railyard on Kubernetes

stripe

What we learned

Instance flexibility is important!

Still takes some trial and error

Subpar was a great choice for us

Having a good Orchestration team running Kubernetes has been a force
multiplier.

stripe

Railyard in action

stripe

2019-03-21 00:45:00 UTC

2019-03-21 00:45:00 UTC

2019-03-21 00:43:59 UTC

2019-03-21 00:43:06 UTC

2019-03-21 00:42:58 UTC

2019-03-21 00:38:53 UTC

2019-03-21 00:37:39 UTC

50 minutes

25 minutes

7 minutes

57 minutes

47 minutes

26 minutes

RUNNING

FAILED

FINISHED

SHIPPED

SHIPPED

FINISHED

training

training

training

explanation model

training

training

explanation model

java.lang.Exception: Railyard training failed with exit value: 1.

Error: Some(AssertionError: There should be at least 500 examples

stripe

Successful Kubernetes Job Creations 3h

0.010
0.008
0.006
0.004
0.002

20 Mar

stripe

9]
T
o
pud
=
)
H*

JQJI 2017

Oct 2017

Jan 2018

Apr 2018

Jul 2018

GenerateExplanations
TrainAndEvaluateModels.locally_persist
GenerateExplanations.generate_explanations
TrainAndEvaluateModels.evaluate
TrainAndEvaluateModels.fit

NotifyTopmodel

GenerateFeatures

RunSimulation

TrainAndEvaluateModels

FetchLabels
TrainAndEvaluateModels.build_training_data

By the numbers

Many workflows - from user-facing products like Radar to payments
optimization to internal-facing modeling and risk management
Libraries including scikit-learn, pytorch, fasttext, xgboost, and prophet
Hundreds of thousands of models trained, thousands more every week
CPU, GPU, and high memory resource types

Models used in 100s of millions of real-time predictions every day

stripe

Number of models trained

Railyard on
Kubernetes

Railyard

Jul 2017 Oct 2017 Jan 2018 Apr 2018 Jul 2018 Oct 2018

stripe

What we did

e Simple but flexible API for running and automating training workflows

e Resource management via Kubernetes to reduce toil, improve
reliability and security

e Instrumentation throughout to track model provenance and
ownership, as well as debug and profile training jobs

e We useitto train thousands of models per week for a range of

user-facing and internal ML applications

stripe

Feedback from our users!

“Training models with railyard has been nice - it’s saved me time by
abstracting away the more tedious parts of training (loading data,
separating training/test sets, fitting and scoring, writing output files),
allowing me to focus more on building features and model architecture.”

“Railyard has made it much simpler to write a new pipeline. When <new
teammate> started, | was able to simply point him towards docs to get him

going.”

“I explained the ml stack for <my project> to several people on <my>team
and they were really relieved to hear that training code used a "standard"
way of doing things that they could count on others knowing about.”

stripe

Thanks / come work with me :)

e Stripeis hiring for interesting Data roles in Seattle, SF, and remote,
using data to track and move money, build state-of-the-art ML

e Special thanks to Rob Story, Thomas Switzer, and Sam Ritchie

stripe

